

Frontier of Information Visualization and Visual Analytics in 2016

Journal of Visualization, 2017 Min Lu, Siming Chen, Chufan Lai, Lijing Lin, and Xiaoru Yuan

8. Februar 2018

Zhida Sun

HCI Initiative, HKUST

Background ●○○	Theory 0000	Methodology	Results 00	Conclusion o	References
General Informa	ation				

This paper is a cross-section survey by taking 70 latest literatures to obtain insights into the ecology of Information Visualization and Visual Analytics field in 2016.

1. Audience

Target community: Visualization Target users: Ordinary people

2. Paper type

Survey

Background ○●○	Theory 0000	Methodology	Results 00	Conclusion o	References
Research Proble	ems				

In Information Visualization and Visual Analytics field (especially in 2016):

- 1. What challenges have been covered recently?
- 2. How the research works are distributed?
- 3. What new research trends are there?

Background ○○●	Theory 0000	Methodology	Results 00	Conclusion o	References
Why Choose Th	nis Paper?				

- 1. Present a literature description space based on well-known visualization frameworks
- 2. Provide a comprehensive overview of the research progress
- 3. Summary the research topics of interest
- 4. Identify the newly emerging research directions and discuss the future trends
- 5. Show how to write research summary in bottom-top approach

Background	Theory ●○○○	Methodology	Results oo	Conclusion o	References
Literature Descr	iptors				

- 1. Basic Information (4): title, major affiliation, venue, etc.
- 2. Data Domain (8):

textual, spatial, temporal, multi-dimensional, hierarchical, network, hybrid, general.

3. Visual Design Philosophy (5):

stand-alone, multi-view, mixed-in, add-on, physical.

4. Exploring Philosophy (7):

overview-detail, brush-link, exploration-recommendation, query, progressive, interaction enhanced exploration, immersive.

5. Challenge (15):

usability; assessment; prior knowledge; education and training; scalability; aesthetic; dynamics; causality, visual inference, and predictions; semantics; data quality and uncertainty; data provenance; data stream; integration; knowledge domain visualization; synthesis.

Background	Theory ○●○○	Methodology	Results 00	Conclusion o	References
Literature Descr Visual Design Philoso	iptors ^{phy}				

- 1. Stand-alone: emphasizes one major diagram and others serve as auxiliaries;
- 2. Multi-view: refers to the interface with multiple coordinate visual components;
- 3. Mixed-in: is to design one hybrid visualization based on two or more existing visualizations;
- 4. Add-on: is to add visual enhancement while preserving the design of original one;
- 5. Physical: takes the objects in reality as the medium of visualization.

Background	Theory ○○●○	Methodology	Results 00	Conclusion o	References
Literature Descr Exploring Philosophy	iptors				

- Overview-detail: explores globally first and then perform detail analysis on demand;
- 2. Brush-link: provides the connecting exploration among multiple views;
- 3. Exploration-recommendation: takes the exploration (e.g., labelling) of users as input and responses users with feedback accordingly;
- 4. Query: implies those systems based on information retrieval;
- 5. Progressive: updates the result iteratively during the exploration;
- 6. Interaction enhanced exploration: improves exploring experience by interaction recording and recovering;
- 7. Immersive: emphasizes on embedding users in the visualization environment.

Background	Theory	Methodology	Results	Conclusion	References
000	0000	00	00	0	
Literature Descr ^{Challenge}	iptors				

- 1. Usability: asks for low-cost, ready-to-use information visualization systems and techniques;
- 2. Assessment: includes understanding of elementary perceptual-cognitive tasks, measurement of visual quality;
- 3. Prior knowledge: requires to adapt information visualization systems to the accumulated knowledge of their users;
- 4. Education and training: refer to the need to spread and communicate the knowledge of visualization inside as well as outside the field;
- 5. Scalability: requires continual performance as the scale increases;
- 6. Aesthetic: asks for insightful and visually appealing information visualizations;
- 7. Dynamics: needs to deal with the changes over time;
- 8. Causality, visual inference, and predictions: understands the technology and comprehend the logic, reasoning and common sense;
- 9. Semantics: requires to recognize complex coherences with human beings;
- 10. Data quality and uncertainty: poses the challenge of analyzing data with quality problems or uncertainty;
- 11. Data provenance: asks for the understanding where data come from;
- 12. Data stream: requires to deal with the streaming data;
- 13. Integration: requires integration with automatic analysis, database, statistics, etc.;
- 14. Knowledge domain visualization: requires conveying of information structures with knowledge;
- 15. Synthesis: requires the solution to a series of heterogeneous problems.

Background	Theory	Methodology	Results	Conclusion	References
000	0000	•0	00	0	
Research Metho	ods				

- 1. Extract descriptors based on well-known visualization frameworks and challenges to depict a research publication from multiple aspects
- 2. Perform a peer review among all authors to code literatures with the descriptors
- 3. Conduct a mixed quantitative and qualitative analysis to gain insights into the current research progress

Background	Theory	Methodology ○●	Results	Conclusion	References
Analysis Workflo	WC				

Figure 1: Workflow of literature analysis: a unified set of descriptors is derived for information visualization and visual analytics; literature is multi-pass coded with descriptors by authors; and insights are obtained from a mixed quantitative and qualitative analysis

Background	Theory 0000	Methodology oo	Results ●○	Conclusion o	References
Results					

- 1. IEEE VIS 2016 accepts 70 full journal-track papers
 - 1). 37 from InfoVis
 - 2). 33 from VAST
- 2. Publication Distribution¹
 - 1). 42 certain visualization or visual analytic methodologies
 - 2). 28 evaluation, theory or performance improvement

¹https://link.springer.com/article/10.1007/s12650-017-0431-9

Figure 2: Distribution of 42 Publications over Different Design and Exploration Philosophies

* * * * * * *

* *

**

* * * *

* * * *

×

* *

*

*

* *

ω

N

* * * * 4

×

• 040

٠ 8. r.

•

• Que

essive exploration

· Interaction enhanced

Background	Theory 0000	Methodology	Results 00	Conclusion •	References
Take-Home Me	ssage				

- 1. Research trend
 - 1). Classical topics keep being solved, such as graph visualization, multi-dimensional visual analytics.
 - 2). Visual analytics is applied in more and more domains, with advanced machine learning integrated.
 - 3). The **communication** and **story-telling capability** of visualizations is under exploration.
 - 4). Theories and models of visualization field are proposed to consolidate the foundation of the discipline.
 - 5). New design and exploration philosophies, such as visualization by demonstration.
 - 6). **Immersive analytics** and **physical visualization** emerge as a new research of interest in recent years.
- 2. Literature survey method
 - 1). Top-bottom surveying approach: based on the opinion and experiences of the authors
 - 2). Bottom-top surveying approach: takes every single publication as input data and performs analysis to draw the conceptual map of domain

Background	Theory 0000	Methodology	Results 00	Conclusion o	References
References					

Min Lu, Siming Chen, Chufan Lai, Lijing Lin, and Xiaoru Yuan. Frontier of information visualization and visual analytics in 2016. *Journal of Visualization*, 20(4):667–686, Nov 2017.